
T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic
protein and disease activity in multiple sclerosis

Introduction

Autoreactive T cells play a central role in multiple sclero-

sis (MS) (reviewed in ref. 1). Their attack on the white

matter of the central nervous system leads to multiple

demyelinating lesions. Myelin basic protein (MBP) is con-

sidered to be a self-antigen of major importance in this

process. The initiating event in the activation of autoreac-

tive CD4+ T cells is the presentation of self-peptides by

antigen-presenting cells. Traditionally, dendritic cells and

macrophages, both of which are derived from monocytes,

are viewed as the key players in this respect (reviewed in

ref. 1). However, B cells may also play an important role

as antigen-presenting cells in MS, as demonstrated in

experimental autoimmune encephalomyelitis (EAE) in

both rats2,3 and mice.4

Naive CD4+ T helper (Th) cells may develop into dif-

ferent committed helper cell subsets characterized by

distinct cytokine profiles,5 interferon-c (IFN-c) and inter-

leukin-4 (IL-4) being the signature cytokines of Th1 and

Th2 cells, respectively. Moreover, a subset of memory

CD4+ T cells (Th17 cells) producing IL-17 under the

influence of IL-6, IL-23 and transforming growth factor-b
(TGF-b) has been described in mice.6,7 Recently, human
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Summary

Autoreactive T cells are thought to play an essential role in the patho-

genesis of multiple sclerosis (MS). We examined the stimulatory effect of

human myelin basic protein (MBP) on mononuclear cell (MNC) cultures

from 22 patients with MS and 22 sex-matched and age-matched healthy

individuals, and related the patient responses to disease activity, as indi-

cated by magnetic resonance imaging. The MBP induced a dose-depen-

dent release of interferon-c (IFN-c), tumour necrosis factor-a (TNF-a)

and interleukin-10 (IL-10) by patient-derived MNCs. The patients’ cells

produced higher amounts of IFN-c and TNF-a, and lower amounts of

IL-10, than cells from healthy controls (P < 0�03 to P < 0�04). Five

patients with MS and no controls, displayed MBP-induced CD4+ T-cell

proliferation. These high-responders exhibited enhanced production of

IL-17, IFN-c, IL-5 and IL-4 upon challenge with MBP, as compared with

the remaining patients and the healthy controls (P < 0�002 to P < 0�01).

A strong correlation was found between the MBP-induced CD4+ T-cell

proliferation and production of IL-17, IFN-c, IL-5 and IL-4 (P < 0�0001

to P < 0�01) within the patient group, and the production of IL-17 and

IL-5 correlated with the number of active plaques on magnetic resonance

images (P = 0�04 and P = 0�007). These data suggest that autoantigen-

driven CD4+ T-cell proliferation and release of IL-17 and IL-5 may be

associated with disease activity. Larger studies are needed to confirm this.

Keywords: CD4+ T cells; interleukin-17; multiple sclerosis; myelin basic

protein; T helper type 17 cells

Abbreviations: CD, cluster of differentiation; CFSE, 5,6-carboxyfluorescein-diacetate-succinimidyl-ester; EAE, experimental
autoimmune encephalomyelitis; EDSS, Expanded Disability Status Scale; HR, high-responder; IFN-c, interferon-c; IL,
interleukin; MBP, myelin basic protein; MNC, mononuclear cell; MRI, magnetic resonance imaging; MS, multiple sclerosis; PLP,
proteolipid protein; TGF-b, transforming growth factor-b; TNF, tumour necrosis factor; Tr1, type 1 regulatory cells.
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Th17 cells have been characterized,8 and it has been

shown that human naı̈ve T cells differentiate into IL-17-

producing cells under the influence of IL-1b and IL-6,

while TGF-b apparently suppresses Th17 differentiation

in humans.9 On the other hand, the existence of CD4+

T-cell subsets with suppressive activity is now well estab-

lished. These include inducible type 1 regulatory T cells

(Tr1) producing IL-10 (reviewed in ref. 10).

The Th1 cytokines play a pathogenic role in MS by driv-

ing the recruitment and activation of immune cells or by

having toxic or proapoptotic effects on oligodendrocytes

(reviewed in ref. 1). A detrimental role of IFN-c in the

pathogenesis of MS was demonstrated when exacerbation

of the disease was observed in seven of 18 patients treated

with IFN-c.11 Moreover, the IFN-c responses to MBP-

derived peptides in vitro correlate with clinical disease

progression.12 Elevated levels of IL-17 have been demon-

strated in the cerebrospinal fluid and in brain lesions of

patients with MS,13 but the pathogenic role of Th17 cells

and the manner in which they are activated remain un-

resolved. In adoptive transfer experiments, T cells produc-

ing IL-17 induce EAE, while T cells producing IFN-c do

not.7,14 Accordingly, administration of antibodies to IL-17

prevents the development of EAE and delays the onset of

paralysis once EAE has been induced.7,15 The source of

IL-17 production in wild-type mice with EAE appears to

be almost exclusively Th17 cells, the presence of which has

been demonstrated in the central nervous system as well as

in the superficial lymph nodes.16

IL-10 is thought to protect against disruption of the

blood–brain barrier17 and the development of EAE in

mice.18–20 In proteolipid protein-stimulated cultures, a

higher production of IL-10 was observed in cultures from

patients whose MS was in remission, compared with

cultures from either patients undergoing acute MS attacks

or control subjects.21 IL-4 also plays a protective role in

autoimmune disease, usually in concert with IL-10.19,22

In accordance, T-cell clones from patients with MS

exacerbations have been shown to respond to challenge

with proteolipid protein with decreased production of

IL-4, compared with clones from patients in remission or

healthy controls.21

The existence of circulating T cells reacting with MBP

has been demonstrated in healthy individuals as well as in

patients with MS.23–26 Some investigators have used

MBP-derived peptides for activation of these T cells23–25

and others have used bovine MBP.23,24 However, pulsing

of antigen-presenting cells with peptides may not repre-

sent the physiological manner of antigen presentation,

and xenogenic differences may account for some of the

reactivity with bovine MBP. Other studies have shown

that circulating T cells from all patients with MS and

from healthy controls can be stimulated for proliferation

by human MBP, but these responses required addition of

exogenous IL-2.26

Here, we examine the CD4+ T-cell proliferation and

cytokine production upon stimulation of mononuclear

cells (MNCs) from 22 patients with MS and 22 matched

controls with purified human MBP under near-physiologi-

cal circumstances, i.e. in the presence of relatively high

concentrations of autologous serum and in the absence of

exogenous cytokines. We identify a subset of patients with

MS who display a distinct response to stimulation with

MBP, including CD4+ T-cell proliferation and the produc-

tion of IL-4, IL-5, IL-17 and relatively large amounts of

IFN-c. The CD4+ T-cell proliferation and production of

IL-17, as well as IL-5, correlated with disease activity, as

determined by active brain lesions detectable by magnetic

resonance imaging (MRI). A mixed Th1/Th2/Th17

response to MBP seems to be a characteristic of active MS.

Materials and methods

Subjects

Blood samples were collected from 22 untreated patients

with MS (Table 1; 14 women and eight men, median age

35 years, range 25–46 years). Twenty of the 22 patients

were diagnosed with relapsing-remitting MS, and the

remaining two patients were diagnosed with a clinically

isolated syndrome. None of the patients had been treated

with glucocorticoids within 4 weeks of study entry, and

none of the patients had ever been treated with immuno-

suppressive drugs such as azathioprine, methotrexate,

cyclophosphamide or mitoxantrone. Twenty-two healthy

blood donors (14 women and eight men, median age

35 years, range 23–48 years) were used as controls. The

patients with MS were human leucocyte antigen-typed by

single specific primer–polymerase chain reaction (Geno-

vision, Qiagen, Ballerup, Denmark). The informed

consent of all participating subjects was obtained and the

study was approved by the local ethics committee.

Magnetic resonance imaging

Scanning was performed using a 3�0 Tesla whole body

scanner (Trio, Siemens, Erlangen, Germany). A single

three-dimensional MPRAGE (Magnetization Prepared

RApid Gradient Echo) structural imaging sequence was

acquired approximately 15 min after the administration

of gadolinium contrast (0�2 mmol/kg body weight of

Magnevist; Schering AG, Berlin, Germany). Lesions that

enhance after the administration of gadolinium are active

MS lesions with blood–brain barrier disruption. Enhanc-

ing lesions were detected and counted by an experienced

technician using siftware developed in-house. The MRI

was performed in 18 of the 22 patients. Fourteen patients

were scanned up to 1 week before blood sampling. Two

patients were scanned the day after blood sampling, and

one was scanned 1 week after sampling. Four patients

162 � 2008 The Authors Journal compilation � 2008 Blackwell Publishing Ltd, Immunology, 125, 161–169

C. J. Hedegaard et al.



were not scanned as the result of a variety of technical

problems.

Cells and serum

Cell samples were collected in lithium-heparin tubes (BD

Bioscience, Brondby, Denmark), and MNCs were isolated

by density centrifugation (Ficoll–Hypaque; Lymphoprep,

Nycomed, Oslo, Norway). Serum was collected in dry Vac-

utainer tubes (BD Bioscience) and isolated after 1 hr by

spinning at 814 g for 30 min. The MNCs were incubated

with 5,6-carboxyfluorescein-diacetate-succinimidyl-ester

(CFSE) dye (Molecular Probes, Poortgebouw, the Nether-

lands) at a final concentration of 2 lM, for 10 min at 37�,

and were thereafter washed and resuspended in RPMI-

1640 (Biological Industries, Kibbutz Beit Haemek, Israel)

containing 50 lg/ml gentamycin (Gibco, Paisley, UK),

2 mM glutamine (Gibco) and 30% (v/v) serum. The

labelled MNCs were distributed into 96-well Nunclon�
flat-bottomed MicroWell� Plates (Life Technologies,

Roskilde, Denmark) at 5 · 105 cells/well in a final volume

of 150 ll. The cells were grown for 10 days at 37�, in 5%

CO2, in the absence of antigen (negative control) or in the

presence of either MBP or tetanus toxoid. Eighty-five-

microlitre samples were taken at days 1 and 7 for assess-

ment of cytokine content, and 100 ll RPMI-1640 was

added at these time-points. The cells were washed in phos-

phate-buffered saline and assessed for CFSE content using

a FACSCalibur (Becton Dickinson, Brondby, Denmark), at

a band pass filter wavelength of 530 nm. CD4+ T cells were

identified by staining with peridinin chlorophyll protein

(PerCP) -conjugated anti-CD4.

Antigens

Purified human MBP was purchased from Insight Bio-

technology Ltd. (Wembley, UK) and used for stimulation

of MNC cultures at a concentration of 30 lg/ml, unless

otherwise stated. A secondary, foreign control antigen,

tetanus toxoid (Statens Serum Institute, Copenhagen,

Denmark), was used for stimulation at 10 lg/ml.

Measurement of proliferation

Measurement of CD4+ T-cell proliferation was carried

out as described.27 In brief, the CFSE content of the

Table 1. Patient characteristics

Patient

# Gender Age

Disease

duration

(years) Diagnosis

MBP-induced

CD4+ T-cell

proliferation1 HLA-DR2 HLA-DQ2 MRI3 EDSS4

1 F 38 New RRMS + 4, 13 3, 6 6 0

2 F 40 New CIS ) 14, 15 5, 6 2 1

3 F 39 New RRMS ) 4, 15 3, 6 3 1

4 M 30 1 RRMS ) 3, 7 2 0 1

5 F 25 1 RRMS + 15, 16 5, 6 12 0

6 F 28 1 RRMS + 14, 15 5, 6 n.d. 2�5
7 M 40 2 RRMS ) 1, 15 5, 6 1 2

8 F 46 2 RRMS ) 3, 13 2, 6 0 2

9 F 29 2 RRMS ) 15 6 0 5

10 F 36 12 RRMS ) 3, 13 2, 3 n.d. 2

11 M 25 3 RRMS ) 4, 13 3, 6 0 0

12 F 35 3 RRMS ) 8, 15 4, 6 2 0

13 F 27 3 CIS ) 8, 15 4, 6 2 0

14 F 37 3 RRMS ) 13, 15 6 0 6

15 M 25 2 RRMS ) 4, 15 3, 6 n.d. 1�5
16 M 35 4 RRMS ) 3, 15 2, 6 0 1

17 M 41 7 RRMS ) 4, 7 2, 3 0 0

18 M 29 9 RRMS + 1, 15 5, 6 2 2

19 F 44 9 RRMS ) 3, 15 2, 6 0 3

20 F 29 12 RRMS + 3, 15 2, 6 0 1

21 F 35 2 RRMS ) 7, 15 2, 6 n.d. 0

22 M 39 18 RRMS ) 1, 3 2, 5 0 1

RRMS, relapsing–remitting multiple sclerosis; CIS, clinically isolated syndrome; EDSS, Expan-

ded Disability Status Scale; n.d, not determined.
1Positive CD4+ T-cell proliferation (net proliferation > 1%).
2Human leucocyte antigen (HLA) typing was carried out in-house using low-resolution tech-

nology.
3Number of active lesions as determined by magnetic resonance imaging.
4EDSS44 was measured at the time of blood sampling.
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MNCs was measured at day 10 using a FACScalibur

flow cytometer (BD Bioscience), at a band pass filter

wavelength of 530 nm. CD4+ T cells were identified on

the basis of staining with PerCP–anti-CD4 (BD Biosci-

ence). Cell divisions were tracked on the basis of the

CFSE content, which is halved upon each cell division,

so cells with less than half the fluorescence intensity of

the major peak (undivided cells) were considered to be

undergoing proliferation. High-responders to MBP were

defined as individuals with > 1% proliferating CD4+ T

cells at this time-point, after allowance for the back-

ground proliferation occurring in the absence of stimu-

lating antigen (< 0�5%). The interassay variability was

21%.

Measurement of cytokines in culture supernatants:

Cytokines [IL-2, IL-4, IL-5, IL-10, tumour necrosis fac-

tor-a (TNF-a) and IFN-c] were measured by flow cyto-

metry using the cytometric bead array Th1/Th2 kit and the

corresponding software (BD Bioscience), according to the

manufacturer’s protocol. The intra-assay variability was

2–5%, and the interassay variability was 5–10%. Inter-

leukin-17 was measured using an IL-17 singleplex

kit from Biosource (Invitrogen, Biosource, Taastrup,

Denmark) using a Luminex 100 IS (Luminex corp.,

Austin, TX). The STARSTATION version 2�0 software

(Applied Cytometry Systems, Sheffield, UK) was

employed for analysis. All cytokines were measured at day

1 and day 7, and the values reported here are those

measured at the time of peak production, day 1 for

TNF-a and IL-10, and day 7 for the remaining cytokines.

Statistics

PRISM 4 (GraphPad, San Diego, CA) was used for statisti-

cal analysis. The Mann–Whitney U-test was employed to

compare data from two groups or subgroups. Spearman’s

rank sum correlation coefficient (Rs) was used to assess

whether two parameters correlated. P-values < 0�05 were

considered significant.

Results

MBP-induced production of IFN-c, TNF-a, IL-10 and
IL-2

Stimulation with MBP elicited dose-dependent IL-10,

TNF-a and IFN-c responses in MNC cultures from

patients with MS and healthy individuals (Fig. 1).

The MBP-elicited production of TNF-a and IL-10 was

seen in all cultures after 1 day of stimulation (Fig. 2).

Production of TNF-a was higher in the patient group

than in the control group (Fig. 2a), while the opposite

was true for IL-10 (Fig. 2b), in accordance with these

cytokines’ supposed detrimental and protective effects in

MS, respectively.1

When it occurred, MBP-elicited IFN-c production

increased during the observation period and was detect-

able (> 10 pg/ml) at day 7 in 11 of 22 MNC cultures

derived from patients with MS, and in five of 22 MNC

cultures from healthy controls (Fig. 2c). Overall, the

IFN-c responses were significantly higher in MNC cul-

tures from patients with MS than in cultures from healthy

controls.

Detectable production of IL-2 was observed at day 7 in

three cultures from patients only (data not shown).
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Figure 1. Dose-dependent cytokine responses to myelin basic protein

(MBP). Mononuclear cells from 13 patients with multiple sclerosis

(MS; circles) and six healthy controls (Ctrl; squares) were grown in

medium containing autologous serum (30% v/v) and increasing con-

centrations of purified human MBP. The levels of tumour necrosis

factor-a (a) and interleukin-10 (b) in the culture supernatants after

1 day of incubation, and the levels of interferon-c after 7 days of

incubation (c) are shown as median and interquartile ranges.
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MBP-elicited CD4+ T-cell proliferation and
production of IL-17, IFN-c, IL-4 and IL-5 by a
subgroup of high-responding patients

We identified five patients with MS, referred to as high-

responders (HRs) in the following text, in whom CD4+ T

cells exhibited a proliferative response to challenge with

MBP (Table 1, Fig. 3a,b). None of the healthy controls

exhibited a similar response. After 10 days of expansion,

the MBP-reactive CD4+ T-cell subset in the cultures

derived from the HRs had undergone 3�6–6�3 divisions,

and their progeny constituted 8–74% of the total CD4+

T-cell population (Fig. 3b). The enhanced response of

CD4+ T cells from the HRs to MBP did not appear to be

the result of a generalized T-cell hyperreactivity because

their response to a control antigen, tetanus toxoid, tended

to be lower, rather than higher, than that of healthy

controls (Fig. 3c).

Detectable MBP-elicited secretion of IL-17 (> 10 pg/ml

per well) was observed in four of the five cultures derived

from HRs, but not in any cultures derived from the

remaining patients, or from the healthy controls (Fig. 4a).

Likewise, the HRs exhibited significantly higher produc-

tion of IFN-c, IL-4 and IL-5 than the remaining patients

and the healthy controls (Fig. 4b–d). The MBP-elicited

production of IL-17, IFN-c, IL-5 and IL-4 all correlated

with the MBP-induced CD4+ T-cell proliferation

(P < 0�001, P < 0�002, P < 0�0001 and P < 0�01, respec-

tively; data not shown).

Association between clinical activity and MBP-
induced cytokine production

Within 1 week before or after blood sampling, the disease

activity of 18 of the 22 patients with MS was assessed by

MRI. Eight of these patients exhibited active brain lesions

(Table 1). The number of active lesions correlated with
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Figure 2. Myelin basic protein (MBP)-elicited cytokine production by

patient and control cells. Mononuclear cells from 22 untreated

patients with multiple sclerosis [MS; 20 with relapsing–remitting MS

(RRMS); two with clinically isolated syndrome (CIS)] and 22 healthy

controls (Ctrl) were grown in the presence of human MBP (30 lg/ml)

or no antigen. The resulting net production of tumour necrosis

factor-a (TNF-a; a) and interleukin-10 (IL-10; b) at day 1, and

interferon-c at day 7 (IFN-c; c), after subtraction of the background

production in the absence of stimulating antigen is shown. The back-

round production was similar in patients and controls, < 34 pg/ml for

TNF-a, < 60 pg/ml for IL-10 and < 3 pg/ml for IFN-c. Horizontal

bars represent median values.
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Figure 3. Myelin basic protein (MBP)-elicited CD4+ T-cell proliferation. Carboxyfluorescein-diacetate-succinimidyl-ester (CFSE)-labelled mono-

nuclear cells were incubated for 10 days with human MBP (30 lg/ml), or no antigen, and divisions of CD4+ T cells were tracked by flow cyto-

metry. (a) Histograms showing undivided CD4+ T cells (G0) and cells having undergone more than one division, as identified by a reduction in

fluorescence intensity. The upper panel shows unstimulated cells, the middle panel shows cells stimulated with MBP, and the lower panel shows

tetanus toxoid (TT)-stimulated cells. (b) The proportion of divided CD4+ T cells from 22 patients with multiple sclerosis (MS) and 22 sex-

matched and age-matched healthy controls (Ctrl) after 10 days of stimulation with MBP is shown. (c) The corresponding proportion of divided

CD4+ T cells from 13 randomly selected patients with multiple sclerosis (MS) and 15 healthy controls (Ctrl) after 10 days of stimulation with a

control antigen, TT. Closed circles in (b) and (c) represent the five high-responders to MBP. In all cases, the proportion of cells in division was

less than 0.5% in the absence of antigenic stimulation.
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both CD4+ T-cell proliferation (Fig. 5a) and the MBP-

induced production of IL-17 (Fig. 5b) and IL-5 (Fig. 5c),

which was characteristic of HRs, but somewhat surpris-

ingly it was not correlated with the production of IFN-c
(Fig. 5d). No correlations were found for IL-4 (P < 0�77)

or for the two cytokines produced by all individuals,

TNF-a (P < 0�29) and IL-10 (P < 0�35) (data not

shown). The data suggest that IL-17 and IL-5 responses

are associated with active disease, but given the low num-

ber of patients with strong cytokine responses and the

consequently low levels of significance, the results should

be interpreted with caution.

Influence of tissue types on the observed responses to
MBP

We found no difference in human leucocyte antigen

phenotypes between HRs and the remaining patients

without MBP-induced CD4+ T-cell proliferation (Table 1).

Discussion

T cells are known to play a critical role in the pathogene-

sis of MS and are found in active lesions in the central

nervous system.28 Here we have compared T-cell

responses to MBP, in terms of CD4+ T-cell proliferation

and the production of a series of cytokines; in MNC

cultures derived from patients with MS and from

sex-matched and age-matched healthy individuals.

The CD4+ T-cell proliferation induced by MBP was

observed in none of the cultures derived from healthy

controls, but was found in the cultures of five patients

(approximately 23%). Imaging was performed in four of

these patients, and the finding of active lesions on MRI in

three of them indicates that MBP-elicited proliferation of

peripheral CD4+ T cells is a marker of active disease.

Using a similar assay, Crawford and colleagues found

CD4+ T-cell proliferation induced by bovine MBP in

MNC cultures from as many as 63% of healthy individu-

als;24 this compares with none in the present study. This

discrepancy is probably caused by xenogenic differences

in antigenicity between bovine MBP and the human

MBP, purified from brain tissue, that was used in the

present study.

Pette and colleagues isolated MBP-reactive T cells from

all tested patients and controls upon stimulation with

purified human MBP (30 lg/ml as in the present study)

in the presence of exogenous IL-2.26 The MBP-reactive

T-cell lines isolated from patients with MS and from

healthy controls were CD4+ CD8) T cells and mainly
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Figure 5. Correlation between myelin basic protein (MBP)-induced

T-cell proliferation, interleukin-17 (IL-17) production and disease

activity. Mononuclear cell (MNC) cultures from 18 patients with

multiple sclerosis (MS) were incubated with human MBP for

10 days. The proportion of divided CD4+ T cells at day 10 (a), and

the content of IL-17 (b), IL-5 (c), and interferon-c (IFN-c) (d) in

the culture supernatants at day 7 correlated with the number of

brain plaques, as assessed by magnetic resonance imaging. Closed

circles represent the high-responders who were scanned. *Represents

multiple values of 0, 0 [nine in (a–c), six in (d)].
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Figure 4. Myelin basic protein (MBP)-induced production of inter-

leukin-17 (IL-17), interferon-c (IFN-c), IL-4 and IL-5. Mononuclear

cells (MNCs) from patients with multiple sclerosis (MS), 17 low-

responders (LR) and five high-responders (HR), and from 22 healthy,

sex-matched and age-matched controls (Ctrl) were incubated with

MBP for 7 days. The resulting net production of IL-17 (a), IFN-c (b),

IL-4 (c) and IL-5 (d), after subtraction of the background production

in the absence of stimulating antigen, is shown. The background pro-

duction was similar in the patient and control groups, being 0 pg/ml

for IL-17, < 3 pg/ml for IFN-c, < 3 pg/ml for IL-4 and < 2 pg/ml for

IL-5.
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CD4+ CD8+ T cells, respectively. A likely explanation for

the discrepancy between their results and ours is that we

did not add IL-2 to the MNC cultures. The production of

IL-2 was low in our experiments: MBP-stimulated cul-

tures from just three patients and from no controls con-

tained detectable levels (detection limit � 15 pg/ml), and

only at day 7. This may also be a result of rapid con-

sumption of IL-2, however. Although MBP-specific CD4+

T cells may exist in all individuals, our data indicate that

the balance between their activation and suppression is

tipped in favour of activation in a subset of patients with

active disease.

Cells from both patients and controls responded to

MBP with the production of TNF-a and IL-10, but the

patients showed increased production of the proinflam-

matory cytokine TNF-a, in accordance with previous

findings of elevated numbers of blood cells producing this

cytokine in patients with MS.29,30 By contrast, cells from

the healthy controls produced higher amounts of IL-10

than cells from patients with MS. Indeed, de Jong and

colleagues found that genetically determined low produc-

tion of IL-10 and high production of TNF were associated

with a marked increased risk of developing typical

MS.31,32 Using proteolipid protein as stimulating antigen,

Correale and colleagues found that T-cell clones isolated

from patients in remission secreted more IL-10 than

clones from patients with acute attacks, supporting a pro-

tective role for IL-10.21 However, they found no differ-

ence between the IL-10 production by clones from

patients with acute attacks, on the one hand, and clones

from healthy controls, on the other. Our data suggest that

MNCs from healthy individuals are generally capable of

mounting a higher production of IL-10 upon challenge

with MBP than cells from patients with MS. We have not

determined the source of the TNF-a and IL-10 produc-

tion in this study, but it is likely that their production by

T cells, monocytes and B cells is orchestrated by Th133

and Tr1 cells,10 respectively. The rapid onset of IL-10

production observed here suggests that MBP-experienced

Tr1 or B cells exist in the periphery, or that IL-10 pro-

duction by monocytes may be rapidly initiated by alterna-

tive T-cell signals. Interleukin-10 is thought to inhibit the

production of Th1 cytokines22 via an effect on costimula-

tory molecules on antigen-presenting cells,34,35 and to

protect against disruption of the blood–brain barrier.17

Interferon-c stimulates a variety of cells of the immune

system, including T cells and dendritic cells,36 and may

be detrimental in MS by enhancing endothelial perme-

ability17,37 and by being toxic for oligodendrocytes.1 The

detrimental effect of IFN-c in MS has clearly been dem-

onstrated in a clinical trial.11 Moldovan and associates

found that MNCs from patients with MS as well as from

controls responded to MBP-peptides with the production

of IFN-c, but that a twofold higher production occurred

in patients.12 Moreover, the increased IFN-c production

correlated with worsening disability.12 In the present

study, the MS group, as a whole, exhibited significantly

higher MBP-induced production of IFN-c than the

healthy controls. Detectable IFN-c production was elicited

by intact MBP in 11 out of 22 patients with MS and four

of 22 controls, but was considerably increased in patients

with concomitant CD4+ T-cell proliferation. The patients

with CD4+ T-cell responses also showed significantly

higher IL-4, IL-5 and, notably, IL-17 production in the

late-phase response to MBP (i.e. after 7 days) than those

of the remaining patients, and of the healthy controls, i.e.

a mixed Th1/Th2/Th17 response.

Importantly, the MBP-elicited CD4+ T-cell prolifera-

tion, as well as the production of IL-17 and IL-5, corre-

lated with active disease, as shown by active brain lesions

on MRI. The association between IL-17 production and

active brain lesions strongly supports an important role

for IL-17 in the pathogenesis of MS, as previously sug-

gested by the findings that IL-17 induces EAE in ani-

mals,38 and that the level of IL-17 is elevated in the

cerebrospinal fluid and in brain lesions of patients with

MS.13 Our data suggest that MBP-reactive Th17 cells are

present in the circulation of a subset of patients with MS

but not in healthy donors. The mechanisms by which

these autoreactive cells escape central and/or peripheral

regulation remain to be elucidated. While both CD4+ and

CD8+ T cells may have contributed to the production of

IFN-c observed here, it is likely that IL-17 was produced

almost exclusively by CD4+ T cells, as it is in mice.16

We only observed IL-5 production in patients with two

or more active brain lesions. It is possible that IL-5 plays

a protective role in MS because the levels are increased

during treatment with IFN-b and, especially, with glatir-

amer acetate.39–41 The production of IL-5 by some of the

patients with high cytokine responses to MBP may there-

fore reflect a protective, compensatory mechanism, but

further studies with a larger number of patients are

required to clarify this.

The IL-4 production by T cells from the HRs accords

with the finding of high numbers of IL-4-producing cells

in blood and cerebrospinal fluid of patients with MS,42

and with the increases in the levels of messenger RNA for

IL-4 (along with IL-2, IL-4, IL-6, IFN-c and IL-1a) in

spinal cord samples from mice during the acute phase of

EAE.43 By contrast, a decrease in the IL-4 production by

proteolipid protein-stimulated T-cell clones from patients

with MS during acute attacks has also been reported.21

However, as a result of rapid consumption, the levels of

IL-4 in culture supernatants should be interpreted with

caution.

In summary, we have demonstrated that MBP induces

increased production of TNF-a and decreased production

of IL-10 by circulating MNCs from patients with MS

compared with MNCs from healthy individuals. We

found a strong correlation between MBP-elicited CD4+
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T-cell proliferation and production of IL-17, both of

which occurred in a subgroup of high-responding

patients. Notably, the proliferative T-cell responses as well

as the production of IL-17 and IL-5 induced by MBP cor-

related with disease activity in vivo, as measured by active

brain lesions on MRI scans. These data suggest that a

mixed Th17/Th2 response to MBP plays an important

role in active relapsing–remitting MS. Studies in larger

cohorts of patients are needed to confirm this.
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